Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 25(1): e202300595, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37815851

RESUMO

Methanogenic and methanotrophic archaea play important roles in the global carbon cycle by interconverting CO2 and methane. To conserve energy from these metabolic pathways that happen close to the thermodynamic equilibrium, specific electron carriers have evolved to balance the redox potentials between key steps. Reduced ferredoxins required to activate CO2 are provided by energetical coupling to the reduction of the high-potential heterodisulfide (HDS) of coenzyme M (2-mercaptoethanesulfonate) and coenzyme B (7-mercaptoheptanoylthreonine phosphate). While the standard redox potential of this important HDS has been determined previously to be -143 mV (Tietze et al. 2003 DOI: 10.1002/cbic.200390053), we have measured thiol disulfide exchange kinetics and reassessed this value by equilibrating thiol-disulfide mixtures of coenzyme M, coenzyme B, and mercaptoethanol. We determined the redox potential of the HDS of coenzyme M and coenzyme B to be -16.4±1.7 mV relative to the reference thiol mercaptoethanol (E0 '=-264 mV). The resulting E0 ' values are -281 mV for the HDS, -271 mV for the homodisulfide of coenzyme M, and -270 mV for the homodisulfide of coenzyme B. We discuss the importance of these updated values for the physiology of methanogenic and methanotrophic archaea and their implications in terms of energy conservation.


Assuntos
Archaea , Mesna , Mesna/metabolismo , Archaea/metabolismo , Compostos de Sulfidrila , Mercaptoetanol , Dissulfetos/metabolismo , Dióxido de Carbono/metabolismo , Elétrons , Transporte de Elétrons , Metano/metabolismo , Oxirredução
2.
Front Microbiol ; 14: 1235616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149272

RESUMO

Methanogenic archaea play an important role in the global carbon cycle and may serve as host organisms for the biotechnological production of fuels and chemicals from CO2 and other one-carbon substrates. Methanosarcina acetivorans is extensively studied as a model methanogen due to its large genome, versatile substrate range, and available genetic tools. Genome editing in M. acetivorans via CRISPR/Cas9 has also been demonstrated. Here, we describe a user-friendly CRISPR/Cas12a toolbox that recognizes T-rich (5'-TTTV) PAM sequences. The toolbox can manage deletions of 3,500 bp (i.e., knocking out the entire frhADGB operon) and heterologous gene insertions with positive rates of over 80%. Cas12a-mediated multiplex genome editing was used to edit two separate sites on the chromosome in one round of editing. Double deletions of 100 bp were achieved, with 8/8 of transformants being edited correctly. Simultaneous deletion of 100 bp at one site and replacement of 100 bp with the 2,400 bp uidA expression cassette at a separate site yielded 5/6 correctly edited transformants. Our CRISPR/Cas12a toolbox enables reliable genome editing, and it can be used in parallel with the previously reported Cas9-based system for the genetic engineering of the Methanosarcina species.

3.
Appl Environ Microbiol ; 89(4): e0178622, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36920214

RESUMO

Methane-producing archaea play a crucial role in the global carbon cycle and are used for biotechnological fuel production. Methanogenic model organisms such as Methanococcus maripaludis and Methanosarcina acetivorans have been biochemically characterized and can be genetically engineered by using a variety of existing molecular tools. The anaerobic lifestyle and autofluorescence of methanogens, however, restrict the use of common fluorescent reporter proteins (e.g., GFP and derivatives), which require oxygen for chromophore maturation. Recently, the use of a novel oxygen-independent fluorescent activation and absorption-shifting tag (FAST) was demonstrated with M. maripaludis. Similarly, we now describe the use of the tandem activation and absorption-shifting tag protein 2 (tdFAST2), which fluoresces when the cell-permeable fluorescent ligand (fluorogen) 4-hydroxy-3,5-dimethoxybenzylidene rhodanine (HBR-3,5DOM) is present. Expression of tdFAST2 in M. acetivorans and M. maripaludis is noncytotoxic and tdFAST2:HBR-3,5DOM fluorescence is clearly distinguishable from the autofluorescence. In flow cytometry experiments, mixed methanogen cultures can be distinguished, thereby allowing for the possibility of high-throughput investigations of the characteristic dynamics within single and mixed cultures. IMPORTANCE Methane-producing archaea play an essential role in the global carbon cycle and demonstrate great potential for various biotechnological applications, e.g., biofuel production, carbon dioxide capture, and electrochemical systems. Oxygen sensitivity and high autofluorescence hinder the use of common fluorescent proteins for studying methanogens. By using tdFAST2:HBR-3,5DOM fluorescence, which functions under anaerobic conditions and is distinguishable from the autofluorescence, real-time reporter studies and high-throughput investigation of the mixed culture dynamics of methanogens via flow cytometry were made possible. This will further help accelerate the sustainable exploitation of methanogens.


Assuntos
Archaea , Metano , Archaea/metabolismo , Citometria de Fluxo , Metano/metabolismo , Methanosarcina/metabolismo
4.
ACS Synth Biol ; 11(7): 2496-2503, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35730587

RESUMO

The rapid-growing and genetically tractable methanogen Methanococcus maripaludis is a promising host organism for the biotechnological conversion of carbon dioxide and renewable hydrogen to fuels and value-added products. Expansion of its product scope through metabolic engineering necessitates reliable and efficient genetic tools, particularly for genome edits that affect the primary metabolism and cell growth. Here, we have designed a genome-editing toolbox by utilizing Cas12a from Lachnospiraceae bacterium ND2006 (LbCas12a) in combination with the homology-directed repair machinery endogenously present in M. maripaludis. This toolbox can delete target genes with a success rate of up to 95%, despite the hyperpolyploidy of M. maripaludis. For the purpose of demonstrating a large deletion, the M. maripaludis flagellum operon (∼8.9 kbp) was replaced by the Escherichia coli ß-glucuronidase gene. To facilitate metabolic engineering and flux balancing in M. maripaludis, the relative strength of 15 different promoters was quantified in the presence of two common growth substrates, either formate or carbon dioxide and hydrogen. This CRISPR/LbCas12a toolbox can be regarded as a reliable and quick method for genome editing in a methanogen.


Assuntos
Edição de Genes , Mathanococcus , Sistemas CRISPR-Cas/genética , Dióxido de Carbono/metabolismo , Edição de Genes/métodos , Hidrogênio/metabolismo , Engenharia Metabólica/métodos , Mathanococcus/genética , Mathanococcus/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992140

RESUMO

The reductive acetyl-coenzyme A (acetyl-CoA) pathway, whereby carbon dioxide is sequentially reduced to acetyl-CoA via coenzyme-bound C1 intermediates, is the only autotrophic pathway that can at the same time be the means for energy conservation. A conceptually similar metabolism and a key process in the global carbon cycle is methanogenesis, the biogenic formation of methane. All known methanogenic archaea depend on methanogenesis to sustain growth and use the reductive acetyl-CoA pathway for autotrophic carbon fixation. Here, we converted a methanogen into an acetogen and show that Methanosarcina acetivorans can dispense with methanogenesis for energy conservation completely. By targeted disruption of the methanogenic pathway, followed by adaptive evolution, a strain was created that sustained growth via carbon monoxide-dependent acetogenesis. A minute flux (less than 0.2% of the carbon monoxide consumed) through the methane-liberating reaction remained essential, indicating that currently living methanogens utilize metabolites of this reaction also for anabolic purposes. These results suggest that the metabolic flexibility of methanogenic archaea might be much greater than currently known. Also, our ability to deconstruct a methanogen into an acetogen by merely removing cellular functions provides experimental support for the notion that methanogenesis could have evolved from the reductive acetyl-coenzyme A pathway.


Assuntos
Acetilcoenzima A/metabolismo , Archaea/metabolismo , Methanosarcina/metabolismo , Archaea/genética , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Genoma , Metano/metabolismo , Methanomicrobiaceae , Methanosarcina/genética , Methanosarcina/crescimento & desenvolvimento , Proteoma
6.
Front Microbiol ; 9: 2917, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559729

RESUMO

Sulfate is the predominant electron acceptor for anaerobic oxidation of methane (AOM) in marine sediments. This process is carried out by a syntrophic consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB) through an energy conservation mechanism that is still poorly understood. It was previously hypothesized that ANME alone could couple methane oxidation to dissimilatory sulfate reduction, but a genetic and biochemical basis for this proposal has not been identified. Using comparative genomic and phylogenetic analyses, we found the genetic capacity in ANME and related methanogenic archaea for sulfate reduction, including sulfate adenylyltransferase, APS kinase, APS/PAPS reductase and two different sulfite reductases. Based on characterized homologs and the lack of associated energy conserving complexes, the sulfate reduction pathways in ANME are likely used for assimilation but not dissimilation of sulfate. Environmental metaproteomic analysis confirmed the expression of 6 proteins in the sulfate assimilation pathway of ANME. The highest expressed proteins related to sulfate assimilation were two sulfite reductases, namely assimilatory-type low-molecular-weight sulfite reductase (alSir) and a divergent group of coenzyme F420-dependent sulfite reductase (Group II Fsr). In methane seep sediment microcosm experiments, however, sulfite and zero-valent sulfur amendments were inhibitory to ANME-2a/2c while growth in their syntrophic SRB partner was not observed. Combined with our genomic and metaproteomic results, the passage of sulfur species by ANME as metabolic intermediates for their SRB partners is unlikely. Instead, our findings point to a possible niche for ANME to assimilate inorganic sulfur compounds more oxidized than sulfide in anoxic marine environments.

7.
mSphere ; 2(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861523

RESUMO

Biological methane oxidation is a globally relevant process that mediates the flux of an important greenhouse gas through both aerobic and anaerobic metabolic pathways. However, measuring these metabolic rates presents many obstacles, from logistical barriers to regulatory hurdles and poor precision. Here we present a new approach for investigating microbial methane metabolism based on hydrogen atom dynamics, which is complementary to carbon-focused assessments of methanotrophy. The method uses monodeuterated methane (CH3D) as a metabolic substrate, quantifying the aqueous D/H ratio over time using off-axis integrated cavity output spectroscopy. This approach represents a nontoxic, comparatively rapid, and straightforward approach that supplements existing radiotopic and stable carbon isotopic methods; by probing hydrogen atoms, it offers an additional dimension for examining rates and pathways of methane metabolism. We provide direct comparisons between the CH3D procedure and the well-established 14CH4 radiotracer method for several methanotrophic systems, including type I and II aerobic methanotroph cultures and methane-seep sediment slurries and carbonate rocks under anoxic and oxic incubation conditions. In all applications tested, methane consumption values calculated via the CH3D method were directly and consistently proportional to 14C radiolabel-derived methane oxidation rates. We also employed this method in a nontraditional experimental setup, using flexible, gas-impermeable bags to investigate the role of pressure on seep sediment methane oxidation rates. Results revealed an 80% increase over atmospheric pressure in methanotrophic rates the equivalent of ~900-m water depth, highlighting the importance of this parameter on methane metabolism and exhibiting the flexibility of the newly described method. IMPORTANCE Microbial methane consumption is a critical component of the global carbon cycle, with wide-ranging implications for climate regulation and hydrocarbon exploitation. Nonetheless, quantifying methane metabolism typically involves logistically challenging methods and/or specialized equipment; these impediments have limited our understanding of methane fluxes and reservoirs in natural systems, making effective management difficult. Here, we offer an easily implementable, precise method using monodeuterated methane (CH3D) that advances three specific aims. First, it allows users to directly compare methane consumption rates between different experimental treatments of the same inoculum. Second, by empirically linking the CH3D procedure with the well-established 14C radiocarbon approach, we determine absolute scaling factors that facilitate rate measurements for several aerobic and anaerobic systems of interest. Third, CH3D represents a helpful tool in evaluating the relationship between methane activation and full oxidation in methanotrophic metabolisms. The procedural advantages, consistency, and novel research questions enabled by the CH3D method should prove useful in a wide range of culture-based and environmental microbial systems to further elucidate methane metabolism dynamics.

8.
Front Microbiol ; 7: 774, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303371

RESUMO

Stable isotope probing (SIP) is a valuable tool for gaining insights into ecophysiology and biogeochemical cycling of environmental microbial communities by tracking isotopically labeled compounds into cellular macromolecules as well as into byproducts of respiration. SIP, in conjunction with nanoscale secondary ion mass spectrometry (NanoSIMS), allows for the visualization of isotope incorporation at the single cell level. In this manner, both active cells within a diverse population as well as heterogeneity in metabolism within a homogeneous population can be observed. The ecophysiological implications of these single cell stable isotope measurements are often limited to the taxonomic resolution of paired fluorescence in situ hybridization (FISH) microscopy. Here we introduce a taxonomy-independent method using multi-isotope SIP and NanoSIMS for identifying and grouping phenotypically similar microbial cells by their chemical and isotopic fingerprint. This method was applied to SIP experiments in a sulfur-cycling biofilm collected from sulfidic intertidal vents amended with (13)C-acetate, (15)N-ammonium, and (33)S-sulfate. Using a cluster analysis technique based on fuzzy c-means to group cells according to their isotope ((13)C/(12)C, (15)N/(14)N, and (33)S/(32)S) and elemental ratio (C/CN and S/CN) profiles, our analysis partitioned ~2200 cellular regions of interest (ROIs) into five distinct groups. These isotope phenotype groupings are reflective of the variation in labeled substrate uptake by cells in a multispecies metabolic network dominated by Gamma- and Deltaproteobacteria. Populations independently grouped by isotope phenotype were subsequently compared with paired FISH data, demonstrating a single coherent deltaproteobacterial cluster and multiple gammaproteobacterial groups, highlighting the distinct ecophysiologies of spatially-associated microbes within the sulfur-cycling biofilm from White Point Beach, CA.

9.
Science ; 351(6274): 703-7, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26912857

RESUMO

The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane.


Assuntos
Ciclo do Carbono , Metano/metabolismo , Methanosarcinales/metabolismo , Sulfatos/metabolismo , Anaerobiose , Transporte de Elétrons , Sedimentos Geológicos/microbiologia , Methanosarcinales/classificação , Methanosarcinales/genética , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Arqueal/classificação , RNA Arqueal/genética , Água do Mar/microbiologia , Bactérias Redutoras de Enxofre/metabolismo
10.
Environ Microbiol ; 16(8): 2568-90, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24571640

RESUMO

Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry ((15)NH(3) assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and (15)N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level.


Assuntos
Alanina/análogos & derivados , Proteínas Arqueais/química , Proteínas de Bactérias/química , Química Click , Alanina/química , Alanina/metabolismo , Alcinos/química , Archaea/química , Archaea/metabolismo , Proteínas Arqueais/biossíntese , Azidas/química , Bactérias/química , Bactérias/metabolismo , Proteínas de Bactérias/biossíntese , Biofilmes/crescimento & desenvolvimento , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Humanos , Hibridização in Situ Fluorescente , Metionina/química , Metionina/metabolismo , Microscopia de Fluorescência , Boca/microbiologia , Coloração e Rotulagem
11.
J Biol Inorg Chem ; 18(8): 905-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24037219

RESUMO

Heterodisulfide reductase (Hdr) is a key enzyme in the energy metabolism of methanogenic archaea. The enzyme catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the thiol coenzymes M (CoM-SH) and B (CoB-SH). Cleavage of CoM-S-S-CoB at an unusual FeS cluster reveals unique substrate chemistry. The cluster is fixed by cysteines of two cysteine-rich CCG domain sequence motifs (CX31-39CCX35-36CXXC) of subunit HdrB of the Methanothermobacter marburgensis HdrABC complex. We report on Q-band (34 GHz) (57)Fe electron-nuclear double resonance (ENDOR) spectroscopic measurements on the oxidized form of the cluster found in HdrABC and in two other CCG-domain-containing proteins, recombinant HdrB of Hdr from M. marburgensis and recombinant SdhE of succinate: quinone reductase from Sulfolobus solfataricus P2. The spectra at 34 GHz show clearly improved resolution arising from the absence of proton resonances and polarization effects. Systematic spectral simulations of 34 GHz data combined with previous 9 GHz data allowed the unambiguous assignment of four (57)Fe hyperfine couplings to the cluster in all three proteins. (13)C Mims ENDOR spectra of labelled CoM-SH were consistent with the attachment of the substrate to the cluster in HdrABC, whereas in the other two proteins no substrate is present. (57)Fe resonances in all three systems revealed unusually large (57)Fe ENDOR hyperfine splitting as compared to known systems. The results infer that the cluster's unique magnetic properties arise from the CCG binding motif.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Methanobacteriaceae/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredutases/metabolismo , Ácido Succínico/metabolismo , Sulfolobus solfataricus/enzimologia , Sequência de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre/química , Methanobacteriaceae/química , Methanobacteriaceae/metabolismo , Dados de Sequência Molecular , NAD(P)H Desidrogenase (Quinona)/química , Oxirredutases/química , Ligação Proteica , Estrutura Terciária de Proteína , Sulfolobus solfataricus/química , Sulfolobus solfataricus/metabolismo
12.
J Am Chem Soc ; 135(40): 14985-95, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24003767

RESUMO

Ethyl-coenzyme M (CH3CH2-S-CH2CH2-SO3(-), Et-S-CoM) serves as a homologous substrate for the enzyme methyl-coenzyme M reductase (MCR) resulting in the product ethane instead of methane. The catalytic reaction proceeds via an intermediate that already contains all six C-H bonds of the product. Because product release occurs after a second, rate-limiting step, many cycles of intermediate formation and reconversion to substrate occur before a substantial amount of ethane is released. In deuterated buffer, the intermediate becomes labeled, and C-H activation in the back reaction rapidly leads to labeled Et-S-CoM, which enables intermediate formation to be detected. Here, we present a comprehensive analysis of this pre-equilibrium. (2)H- and (13)C-labeled isotopologues of Et-S-CoM were used as the substrates, and the time course of each isotopologue was followed by NMR spectroscopy. A kinetic simulation including kinetic isotope effects allowed determination of the primary and α- and ß-secondary isotope effects for intermediate formation and for the C-H/C-D bond activation in the ethane-containing intermediate. The values obtained are in accordance with those found for the native substrate Me-S-CoM (see preceding publication, Scheller, S.; Goenrich, M.; Thauer, R. K.; Jaun, B. J. Am. Chem. Soc. 2013, 135, DOI: 10.1021/ja406485z) and thus imply the same catalytic mechanism for both substrates. The experiment by Floss and co-workers, demonstrating a net inversion of configuration to chiral ethane with CH3CDT-S-CoM as the substrate, is compatible with the observed rapid isotope exchange if the isotope effects measured here are taken into account.


Assuntos
Etano/metabolismo , Mesna/química , Mesna/metabolismo , Methanosarcina barkeri/enzimologia , Oxirredutases/metabolismo , Isótopos , Cinética , Modelos Moleculares , Oxirredutases/química , Conformação Proteica , Homologia de Sequência
13.
J Am Chem Soc ; 135(40): 14975-84, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24004388

RESUMO

The nickel enzyme methyl-coenzyme M reductase (MCR) catalyzes two important transformations in the global carbon cycle: methane formation and its reverse, the anaerobic oxidation of methane. MCR uses the methyl thioether methyl-coenzyme M (CH3-S-CH2CH2-SO3(-), Me-S-CoM) and the thiol coenzyme B (CoB-SH) as substrates and converts them reversibly to methane and the corresponding heterodisulfide (CoB-S-S-CoM). The catalytic mechanism is still unknown. Here, we present isotope effects for this reaction in both directions, catalyzed by the enzyme isolated from Methanothermobacter marburgensis . For methane formation, a carbon isotope effect ((12)CH3-S-CoM/(13)CH3-S-CoM) of 1.04 ± 0.01 was measured, showing that breaking of the C-S bond in the substrate Me-S-CoM is the rate-limiting step. A secondary isotope effect of 1.19 ± 0.01 per D in the methyl group of CD3-S-CoM indicates a geometric change of the methyl group from tetrahedral to trigonal planar upon going to the transition state of the rate-limiting step. This finding is consistent with an almost free methyl radical in the highest transition state. Methane activation proceeds with a primary isotope effect of 2.44 ± 0.22 for the C-H vs C-D bond breakage and a secondary isotope effect corresponding to 1.17 ± 0.05 per D. These values are consistent with isotope effects reported for oxidative cleavage/reductive coupling occurring at transition metal centers during C-H activation but are also in the range expected for the radical substitution mechanism proposed by Siegbahn et al. The isotope effects presented here constitute boundary conditions for any suggested or calculated mechanism.


Assuntos
Metano/biossíntese , Metano/metabolismo , Methanobacteriaceae/enzimologia , Oxirredutases/metabolismo , Anaerobiose , Domínio Catalítico , Isótopos , Cinética , Modelos Moleculares , Oxirredução , Oxirredutases/química
15.
Nature ; 465(7298): 606-8, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20520712

RESUMO

Large amounts (estimates range from 70 Tg per year to 300 Tg per year) of the potent greenhouse gas methane are oxidized to carbon dioxide in marine sediments by communities of methanotrophic archaea and sulphate-reducing bacteria, and thus are prevented from escaping into the atmosphere. Indirect evidence indicates that the anaerobic oxidation of methane might proceed as the reverse of archaeal methanogenesis from carbon dioxide with the nickel-containing methyl-coenzyme M reductase (MCR) as the methane-activating enzyme. However, experiments showing that MCR can catalyse the endergonic back reaction have been lacking. Here we report that purified MCR from Methanothermobacter marburgensis converts methane into methyl-coenzyme M under equilibrium conditions with apparent V(max) (maximum rate) and K(m) (Michaelis constant) values consistent with the observed in vivo kinetics of the anaerobic oxidation of methane with sulphate. This result supports the hypothesis of 'reverse methanogenesis' and is paramount to understanding the still-unknown mechanism of the last step of methanogenesis. The ability of MCR to cleave the particularly strong C-H bond of methane without the involvement of highly reactive oxygen-derived intermediates is directly relevant to catalytic C-H activation, currently an area of great interest in chemistry.


Assuntos
Biocatálise , Metano/biossíntese , Metano/metabolismo , Methanobacteriaceae/enzimologia , Níquel/metabolismo , Oxirredutases/metabolismo , Anaerobiose , Gases/metabolismo , Cinética , Mesna/análogos & derivados , Mesna/metabolismo , Metilação , Modelos Biológicos , Oxirredução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...